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We consider surface diffusion of a single particle, which performs site-to-site underbarrier hopping, fulfils
intrasite motion between the ground and the first-excited states within a quantum well, and interacts with
surface phonons. We obtain a chain of quantum-kinetic equations for one-particle distribution functions and
nonequilibrium hopping probabilities. The generalized diffusion coefficients are derived, and the generic non-
Markovian diffusion equation is written down both for the infinite lattice model and in the continuous media
limit. In the latter case, the one-particle distribution function obeys the telegrapher’s equation, which could
give us a nonmonotonic behavior of the intermediate distribution functions at large spatial gradients. In a
weak-coupling limit, if the energy of level splitting is comparable with the temperature, there are also pro-
nounced oscillations of the generalized diffusion coefficients. The recrossing/multiple crossing phenomena, a
problem of long tails of the generalized diffusion coefficients, as well as a mapping into the next- to the
nearest-neighbors hopping regime, are discussed.
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I. INTRODUCTION

A description of the diffusion processes of particles ad-
sorbed on metallic surfaces is a topical problem of surface
physics and of a high interest both for experimentalists and
theorists. It is well known that diffusion of the adparticle can
proceed via two different mechanisms: �i� thermally acti-
vated one, when the adsorbed particle due to thermal fluc-
tuations of the bath gets enough energy to surmount a poten-
tial barrier formed by static �or dynamic� location of the
substrate atoms, or �ii� underbarrier quantum tunneling
�1–3�. It is widely believed that the latter scenario is typical
for light adatoms, such as a hydrogen and its isotopes, whose
de Broglie wavelength is comparable with the substrate in-
teratomic spacing a.

However, a class of the “adsorbate-substrate” systems to
be described in a quantum-mechanical manner is much wider
than that. For instance, in Ref. �4�, on the basis of experi-
mental �x-ray magnetic circular dichroism� and computer
simulations �quantum Monte Carlo method� approaches, it
has been shown that the jump rates of Cr adatoms on
Au�111� surface by many orders exceed the values, expected
for thermal overbarrier hopping at low temperatures. In Ref.
�5�, the authors showed that there are notable quantum cor-
rections to the intermediate scattering function of another
quite “heavy” atom Na on flat and corrugated Cu�001� sur-
faces and calculated their contributions in a wide region of
temperatures and coverages. Furthermore, the phenomena,
such as quantum-mechanical tunneling of a light impurity
between interstitial sites of a host lattice �6�, bulk diffusion
of muonium in NaCl and KCl �7�, �+ in metals �8�, are
similar to the problems of surface quantum diffusion, and
their description requires similar theoretical methods
�6,9,10�.

From the theoretical point of view, the diffusion coeffi-
cients are traditionally determined via the Green-Kubo rela-
tions �9,10�, the low frequency and small wave-vector limit
of the dynamic structure factor �3,11�, or zeroth moments of

the “velocity-velocity” autocorrelation functions �11,12�. A
quantum analog of the latter approach is based on the calcu-
lation of “flux-flux” time correlation functions defined either
on different sites of the lattice �13� or on different eigenfunc-
tions of the dividing surface, which crosses a top of the bar-
rier �14�. It is possible to study the well-known “recrossing/
multiple crossing” problem �15,16�, describe effectively the
dynamics of the adsorbed particle, or even to derive a new
quantum transition state theory �14,17�.

The method of quantum-kinetic equations is somewhat
distant from other theoretical approaches. Traditionally, this
method is thought to be less promising because it requires an
existence of a small parameter in the system under consider-
ation. Thus, if there is no way to restrict oneself by the equa-
tion for one-particle distribution functions only, one has to
keep some equations of the hierarchy and decouple them
when appropriate. Such a situation emerges, for instance,
when one deals with collective diffusion, and many-particle
interactions cannot be treated in the framework of the mean-
field approximation �18� or a nonequilibrium behavior of the
phonon subsystem is evident �19�.

In the problems of the tracer diffusion, there is much less
limitation for the application of the quantum-kinetic equa-
tions. Even better results can be obtained if one deals with a
single adparticle, which interacts only with electron and/or
phonon subsystems of the surface. In this case, it is possible
to obtain expressions for the diffusion coefficients, which are
valid up to the second-order approximation with respect to
the tunneling amplitudes. Many reliable results were ob-
tained in the framework of the reduced density-matrix
method in its application to the problems of surface �20,21�
or bulk quantum diffusion �6�. For instance, the mean-square
displacement ��r�t�2� of the adparticle, performing random
motion between lattice sites, has been calculated, a tempera-
ture dependence of the diffusion coefficients in a wide region
of T in the limits of both weak and strong couplings has been
obtained, and a detailed analysis of multiphonon contribu-
tions to the hopping rates has been carried out. However,
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some questions related to the dynamic behavior of the sys-
tem remained out of the examination.

Even in the case of the tracer diffusion, memory effects
can be present, if the substrate has no time to relax during the
adparticle motion. In fact, the leading memory effect is the
backward correlation of the second jump with respect to the
first one since the first jump leaves a vacancy behind. Be-
sides, the memory effects are stronger for the single-particle
motion than for a collective motion, where most of the above
backward correlations cancel out. To answer the question
whether non-Markovian effects are important, one has to es-
timate the ratio between the time scales of the surface exci-
tations, electronic excitations, and adparticle motion. Usu-
ally, it is believed that the electronic excitations are too fast
to contribute to the memory effects �3� though they should be
taken into account to obtain a proper long-time behavior of
the kinetic kernels �10� and reliable values of the quantum
diffusion coefficients �22�. The Markovian approximation is
applicable if �max /��1, where �max stands for the Debye
frequency of the substrate, and � means the vibrational fre-
quency of the adparticle at the bottom of the potential well.
Usually, the above-mentioned time scales are well separated
that justifies the application of the Markovian limit both in
the problems of thermally activated and quantum diffusion.

In the present paper on the basis of a simple model of a
single-particle diffusion, we study the conditions, when the
memory effects play an important role and cannot be ex-
cluded from consideration. It will be shown that in a weak-
coupling limit, when the energy exchange between the ad-
particle and the substrate �which plays a role of the thermal
bath� is very slow, the relaxation times of the generalized
�time-dependent� diffusion coefficients exceed the inverse
Debye frequency by two orders of magnitude. If the vibra-
tional frequency � is comparable with �max, this slow relax-
ation of the generalized diffusion coefficients is accompanied
by an oscillatory behavior.

Once a dominant influence of memory effects on the dy-
namic of the system “substrate adsorbate” is recognized, a
problem of correct determination of the generalized diffusion
coefficients emerges. There are several ways to introduce
them. The first one consists in the generalization of the
Green-Kubo relations to the non-Markovian case �9�. The
second one is dealt with the calculation of the mean-square
displacement of the tagged particle at short times, while a
long-time limit by means of the Einstein’s relation gives us
the value of the usual tracer diffusion coefficient �3,21�. Re-
cent achievements in the atom-tracking technique �23� allow
one to connect the experimentally obtained mean-square dis-
placement of the adparticle with the values calculated theo-
retically.

In our paper, we define the generalized diffusion coeffi-
cient in a different way. We make use of the generalized
collective modes approach, whose cornerstone is the time
hierarchy of the dynamic processes. This method has mani-
fested its efficiency in numerous problems of the condensed-
matter theory �24–27�. In our point of view, in the problems
of the single-particle diffusion this method is much more
preferable due to the following reasons. First of all, there is
no need to solve the system of kinetic equations to obtain the
mean-square displacement of the particle and, correspond-

ingly, the diffusion coefficients, as it was done in Ref, �21�.
Quite contrary, the expressions for the transport coefficients
arise in a consistent way—by the elimination of nonequilib-
rium transition probabilities from the chain of quantum-
kinetic equations with subsequent renormalization of the ki-
netic kernels. One can attribute the renormalized term to the
coherent diffusion coefficient and to impart it a plain physi-
cal meaning. Second, our approach allows to consider both
nearest-neighbor hopping and possible long jumps of the ad-
particle on equal footing. Last but not least, it is possible to
point out and to investigate, in detail, two reasons of differ-
ent nature, leading to the oscillatory dynamics of the inter-
mediate distribution function n�k , t�: �i� considerable spatial
gradients in the system in the presence of the processes of
different time duration and �ii� nonmonotonic behavior of the
generalized diffusion coefficients themselves that leads to the
oscillations of ��r�t�2� at short times. In the case �i�, the
dynamics of the adparticle is governed by the telegrapher’s
equation �3,28�, which �to our knowledge� was introduced in
a semiphenomenological way only. The case �ii� could be
mapped into the next- to the nearest-neighbors hopping re-
gime that results in a similar �oscillatory� dynamics of the
mean-square displacement of the adparticle.

Our paper is organized in the following way. In Sec. II,
we present a Hamiltonian of the “adsorbed particle-
substrate” system, which has been used in Ref. �21�, for the
description of the temperature behavior of the diffusion co-
efficient of the H/W�110� system. In Sec. III, following the
suggested procedure there, the initial Hamiltonian by a se-
quence of unitary transformations is rewritten in the form
without an explicit interaction between subsystems. In Sec.
IV, a chain of non-Markovian equations for one-particle dis-
tribution functions and nonequilibriun hopping probabilities
is derived on the basis of the reduced density-matrix method.
The generalized diffusion coefficients are obtained by the
standard “rolling-up” procedure. The continuous media limit
a→0 is performed and a generic non-Markovian diffusion
equation is written down. In Sec. V, we consider two differ-
ent problems, leading to the oscillatory behavior of the inter-
mediate distribution function n�k , t�. Relationship between
the parameters of the model that leads to the transition from
monotonic to oscillatory behavior of the generalized diffu-
sion coefficients is established. In two last sections, we dis-
cuss the obtained results, point out some related problems to
be solved, and draw final conclusions.

II. SYSTEM HAMILTONIAN

To specify all interactions in the “metallic surface-
adparticles” system, we choose a Hamiltonian, which allows
site-to-site tunneling of an adsorbate, intrasite oscillations of
the adparticle between ground and excited states within the
potential well and an interaction of the adparticles with a
lattice �coupling with substrate is both by density and oscil-
lation modes�. We use Hamiltonian considered in Refs.
�20,21�.

H = HA + Hint + HB, �2.1�

where the adsorbate is described by the two-band Hubbard
Hamiltonian HA,
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HA = � �
�ss��,�

�− t0as0�
† as�0� + t1as1�

† as�1�� + �
s
	�

2
�ns1 − ns0�

+ U
ns�ns − 1�

2

� , �2.2�

with

nsi = �
�

nsi�, ns = ns0 + ns1.

Here s denotes the site in the lattice, 0 and 1 are two states
�ground and excited� within a given well, � is the spin label,
and �ss�� denotes a sum over the nearest-neighbor sites.
Quantum states within a well are referred to as “vibrational”
states, with vibrational frequency �, and we have taken zero
of the energy to lie midway between the two levels. asi�

† �asi��
creates �destroys� a particle on the site s, in the vibrational
state i, and with spin �; nsi�=asi�

† asi� is the number operator
for this state. Depending on the spin of the adparticles, the
creation and destruction operators obey either Bose or Fermi
commutation relations; since we will deal with single adpar-
ticle only, the spin label in all subsequent expressions is
omitted. t0 and t1 are the nearest-neighbor tunneling ampli-
tudes in the ground and first-excited states, respectively �note
that both quantities are positive in the convention used here,
and we expect that t1� t0�. For the adparticles obeying Bose
statistics, U means on-site Hubbard repulsion, which is as-
sumed to be independent of vibration.

The coupling to phonons described by the term Hint is
considered to be local within each well. Phonons may couple
both to the adsorbate density operators and also to the vibra-
tions within a quantum well. The interaction Hamiltonian is
�21�

Hint = �
s
�ns�

q

�sq�bq + bq
†� + �as0

† as1 + as1
† as0��

q

	sq�bq

+ bq
†�� , �2.3�

where bq
†, �bq� creates �destroys� a phonon with a normal-

mode frequency �q. Strengths �sq �	sq� describe coupling of
phonons to the density �oscillation� modes of the adsorbate.
We present the substrate-adsorbate interaction potential
Vint�r ; �us�, parametrized by the particle position r and the
lattice displacements �us, in the form

Vint�r;�us� = Veq�r� + �
s=1

N

usV
s�r� ,

up to the linear terms in the lattice displacements. While the
bandwidths t0, t1, and vibrational frequency � are assumed
to be evaluated in the framework of eigenvector-eigenvalue
problem for the periodic potential Veq�r� felt by the adsorbate
due to the static lattice, the coupling constants are expressed
as the mean values of lattice distortion potential Vs�r�
= �

�Vint�r;�us�
�us

��us�=0 over the localized Wannier states, �s ;0�,
�s ;1�, and are supposed to be the same for all quantum states
�20�. For a one-dimensional �1D� case, the strengths �sq, 	sq
could be written explicitly via the lattice parameters �20�; for

a two-dimensional �2D� infinite lattice �which is considered
in our paper�, we introduce in the next section the lattice
spectral weight functions �20,21� to describe substrate-
adsorbate interaction.

The last term in Eq. �2.1�,

HB = �
q


�qbq
†bq, �2.4�

corresponds to the phonon bath; only longitudinal-acoustic
phonons are taken into account in this model.

III. UNITARY TRANSFORMED HAMILTONIAN

Usually, in the quantum diffusion problems, one can con-
sider the substrate-adsorbate coupling to be arbitrary �either
weak or strong one�. On the other hand, one-particle charac-
teristics of the system described by the first term of the
Hamiltonian �2.1� are treated as small parameters. In such a
case, it is useful �6,20,21� to start from a unitary transformed
Hamiltonian on a new correlated basis, which provides a
better zeroth-order representation: the sequence of unitary
transformations has the effect of changing to a representation
in which the adsorbate is localized at one end of an adsorp-
tion site or the other, and in which there is a correlated dis-
placement of the lattice. Before performing the unitary trans-
formation, we pass to the hybrid set of states for each site
according to the following rule:

asR
L �

1
�2

�as0
� as1

� �3.1�

and similarly for the creation operators. The designation L or
R means that a single adparticle is now localized on the left
or on the right side of the given well. Then, applying a pro-

cedure of double unitary transformation �20,21� H̃=UHU†

with the operator U=U1U2, where

U1 = �
s

exp	− ns�
q

�sq

�q
�bq

† − bq�
 ,

U2 = �
s

exp	− �nsL − nsR��
q

	sq

�q
�bq

† − bq�
 , �3.2�

a transformed Hamiltonian of the system of adparticles is
obtained in the following form �20�:

H̃ = Hintra + Hinter + Hpp + HB � H� + Hpp + HB. �3.3�

The term Hintra describes the lattice-modified intrasite dy-
namics of the adparticle,

Hintra = �
s

U

2
ns�ns − 1� − ��

2
BsasL

† asR + H.c.� , �3.4�

Bs = exp	− 2�
q

	sq


�q
�bq − bq

†�
 �3.5�

with the lattice-induced operator exponent Bs, and denotation
H.c. means Hermitian conjugation. The second term in Eq.
�3.3�
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Hinter = �
�ss��

tch�Bss�
LRasL

† as�R + Bss�
RLasR

† as�L� + tpr�Bss�
LLasL

† as�L

+ Bss�
RRasR

† as�R� �3.6�

is the intersite tunneling term with end-changing �end-
preserving� amplitudes tch �tpr�, which are the linear combi-
nations t

pr
ch = 1

2 �t1� t0� of the initial tunneling amplitudes,
while operators B are of the structure

Bss�
LR,RL = exp	− �

q

��q
ss� � �+��q

ss���bq − bq
†�
 ,

Bss�
LL,RR = exp�− �

q

��q
ss� � �−��q

ss���bq − bq
†�� ,

�q
ss� =

�sq − �s�q


�q
, ����q

ss� =
	sq � 	s�q


�q
, �3.7�

where an upper sign in Eq. �3.7� corresponds to the first
superscript.

The last but one term of the Hamiltonian �3.3�

Hpp = − �
�ss��

�Cs,s�
DDnsns� + 2Cs,s�

DOns�ns�L − ns�R�

+ Cs,s�
OO�nsL − nsR��ns�L − ns�R� �3.8�

describes the particle-particle lattice-induced interaction with
strengths

Cs,s�
DD = �

q

�sq�s�q


�q
, Cs,s�

DO = �
q

�sq	s�q


�q
,

Cs,s�
OO = �

q

	sq	s�q


�q
. �3.9�

Coefficients Cs,s�
DD �C�s−s��

DD correspond to the short-range at-
tractive interaction between adparticles at adjacent sites and,
therefore, oppose the Hubbard on-site repulsion. Terms with
Cs,s�

DO �C�s−s��
DD give a mutual repulsion between particles. The

long-range Cs,s�
OO �C�s−s��

DD interactions �determined by the
overlap of the lattice distortions associated with each par-
ticle� stabilize the system, when the particles are on the sites
s and s� and at the same ends �L or R� of their respective
wells �20�. In the single adsorbate limit, the Hubbard repuls-
ing term vanishes, and Hpp contributes only to a site-
independent lattice stabilization energy �21� Estab=C0

DD

+C0
00 and has no effect on the dynamics of the adsorbate.

Hereafter, we use a condition of the translational symmetry
of the lattice. As a result, the interaction strengths depend
only on the distance between the particles. For the same
reason, we consider site-independent end-changing spectral
weight functions,

J��� = �
q

	sq
2 ��� − �q� , �3.10�

JLR��� = �
q

���sq − �s�q� + �	sq + 	s�q��2��� − �q� ,

JRL��� = �
q

���sq − �s�q� − �	sq + 	s�q��2��� − �q�

�3.11�

and end-preserving ones,

JLL��� = �
q

���sq − �s�q� + �	sq − 	s�q��2��� − �q� ,

JRR��� = �
q

���sq − �s�q� − �	sq − 	s�q��2��� − �q� .

�3.12�

The function �3.10� describes the intrasite dynamics, the
functions �3.11� are related to intersite end-changing pro-
cesses, while Eqs. �3.12� are dealt with intersite end-
preserving processes. At low frequencies, the end-changing
spectral weight functions �labeled by the subscript c� are
approximately given by

Jc��� � �0, �  �0

�c�
D−2, � � �0,

� �3.13�

and the end-preserving �with the subscript p� ones by

Jp��� � �0, �  �0

�p�D, � � �0,
� �3.14�

with

�c = 10G, �p = 12.5G �3.15�

given in units of the dimensionless coupling constant �20,21�

G =
�2

M�max
3 . �3.16�

In Eqs. �3.13�–�3.16�, D labels a dimension of the lattice, M
denotes the mass of a substrate atom, �max stands for a De-
bye frequency, and the coupling strength � is expressed via
the mean value of the distortion potential over localized
Wannier states. Moreover, the lattice is allowed to possess a
nonzero lowest frequency �0. Though the presence of a gap
in the spectrum of acoustic phonons on the infinite lattice
seems to be rather controversial, the evaluation of the diffu-
sion coefficient of a hydrogen atom on a tungsten surface
showed �21� that the obtained results are quite insensitive to
the value of �0 provided the temperature is much greater
than 
�0 /kB. Besides, a low-frequency approximation for the
spectral weight functions shows similar tendencies in the
case of a bulk diffusion of a light inclusion assisted by opti-
cal phonons �6,9,10�. The only difference is the value of the
parameter D, which is found to be equal to 5.

Now we have all constituents of the Hamiltonian �3.3� to
investigate the dynamical properties of the system
“adparticle-substrate” and, in the next section, we will con-
struct the system of quantum-kinetic equations.

IV. KINETIC EQUATIONS FOR ONE-PARTICLE
NONEQUILIBRIUM FUNCTIONS OF ADSORBATE

We consider the first two terms of the Hamiltonian �3.3�
as a small perturbation H�, which allows us to construct a
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closed systems of kinetic equations for one-particle nonequi-
librium distribution functions up to the second order in H�.
Using the method of the reduced density matrix �9�, we
present the equation for nonequilibrium statistical operator
�S�t� of the adsorbate as follows:

��S�t�
�t

+
1

i

��S�t�,HS� = −

1


2�
t0

t

dt� exp�− ��t − t���

�TrB��H�,�H��t − t��,�B�S�t���� .

�4.1�

In Eq. �4.1� �→+0, and H�t�� stands for the operator H� in
the Heisenberg picture,

H��t�� = exp�it��HS + HB�/
�H� exp�− it��HS + HB�/
� ,

H� = Hintra + Hinter − �Hintra + Hinter�B, �4.2�

with the Hamiltonian

HS = − Estab�
s

ns + �Hintra + Hinter�B. �4.3�

The first term in Eq. �4.3� is, in fact, a single adsorbate
limit for the particle-particle lattice-induced interaction Hpp
and, as have been already said, can be omitted. In a many-
particle case �29� but at low coverage, one has to use the
mean-field approximation Hpp

mf for Eq. �3.8� instead of the
first term in Eq. �4.3�. The term with Hpp

mf can be quite rel-
evant, if one deals with additional many-particle interactions,
such as chemical reactions, or if there is a spatial inhomoge-
neity in the system. The remaining part of Eq. �4.3� corre-
sponds to the renormalized tunneling and intrasite terms av-
eraged over the phonon bath. It can be shown that only end-
preserving spectral weight functions give nonzero
contributions. The expression for this term will be presented
later.

One more point deserves mentioning. In the expression
�4.1�, we intentionally retained an initial time t0 in the inte-
gral part instead of performing the Markovian limit t− t0
→�. As will be shown in subsequent sections, such a limit is
not well justified if the coupling constant is weak enough,
and one has to deal with kinetic equations, which are essen-
tially nonlocal in time.

Using the equation for �S�t� after straightforward but
somewhat lengthy calculations, one obtains the system of

linear kinetic equations for the Laplace transforms f̃ s,s�z� and

f̃ s,s+n�z� of the one-particle nonequilibrium distribution func-
tions fs,s�t�=�i=L,R�asi

† asi�S
t and hopping probabilities

fs,s+n�t�=�i=L,R�as+ni
† asi�S

t , where the index s+n means the
nearest neighboring site with respect to s. We present this
system of equations in the following form �see the Appendix
for some details of its derivation�:

z f̃s,s�z� − fs,s�t = 0� = −
i



tinter�

n

� f̃ s,s+n�z� − f̃ s+n,s�z��

− �̃inter�z�	2 f̃ s,s�z� − �
n

f̃ s+n,s+n�z�
 ,

�4.4�

z f̃s,s+n�z� − fs,s+n�t = 0� = −
i



tinter� f̃ s+n,s+n�z� − f̃ s,s�z��

− ��̃inter�z� + �̃intra�z�� f̃ s,s+n�z�

+ �̃LL
+ �z� f̃ s+n,s�z� . �4.5�

A similar chain of equations has been obtained in Ref. �21�;
however, the authors applied a Markovian approximation for
the kinetic kernels and did not study the short-time dynamics
of the adsorbate.

Linearity of Eqs. �4.4� and �4.5� is the result of a single-
particle approximation, and the question about statistics of
the adparticle loses its significance. Note that a similar linear
approximation could be performed also at low coverage of
the adsorbate. However, at low-to-moderate coverage, one
has to retain all nonlinear terms and at high coverage to
include nonequilibrium correlation functions into the set of
dynamical variables of the abbreviated description �9�.

Let us analyze in detail all constituents of the kinetic Eqs.
�4.4� and �4.5�. The first terms of in right-hand side describe
a nondissipative coherent motion of the adsorbate with the
renormalized tunneling amplitude

tinter = tpr exp	−
1

2
�

�0

1

d�
Jp���

�2 coth� 
�

kBT
�


= tpr�0
�pkBT	�pkBT sinh� 1

2�pkBT
�
−�pkBT

. �4.6�

Hereafter, we use dimensionless frequencies in the units of
�max and temperatures in the units of 
�max. The kinetic
kernel

�̃inter�z� = 4�̃LL�z� + 2�̃LR�z� + 2�̃RL�z� �4.7�

corresponds to the dissipative intersite motion of the adsor-
bate and describes processes, when the adparticle performs
series of random site-to-site hoppings �with or without the
change in its quantum states� owing to the interaction with a
bath. The kinetic kernel �̃intra�z� describes dissipative intra-
site dynamics, when the adsorbate during its scattering from
the lattice gets enough energy from the bath to be excited
from the ground state to the upper level within one adsorp-
tion site �the opposite process of particle de-excitation with a
phonon emission is also taken into consideration�. The rates
�̃intra�z�, �̃inter�z� can be obtained from the Laplace transfor-
mation of the kinetic kernels

�x��� = �max�x
2J0

4�2tinter���exp�− „�x�0� − �x���…�

− exp�− �x�0�� , �4.8�

�LL
+ ��� = �maxtpr

2 J0
4�2tinter���exp�− „�LL�0� + �LL���…�

− exp�− �LL�0�� , �4.9�

where

KINETIC EQUATION APPROACH TO THE DESCRIPTION… PHYSICAL REVIEW E 80, 041133 �2009�

041133-5



�x��� = �
�0

1 Jx���
�2 	coth� 
�

2kBT
�cos���� − i sin����
 .

�4.10�

In Table I, we present the amplitudes �x and the spectral
weight functions Jx���, relevant to the rates �4.8� and �4.9�
appearing in the kinetic Eqs. �4.4� and �4.5�. The functions
�Eq. �4.10�� yield lattice contributions to the kinetic kernels,
and the zeroth-order Bessel function J0�2tinter�� in Eqs. �4.8�
and �4.9� accounts for the particle contribution. The latter
function ensures a convergence of the time integrals of Eqs.
�4.8� and �4.9� at any value of the coupling constants, though
from the mathematical point of view, it exceeds the required
accuracy, being higher than the second order in tunneling
amplitudes. We will touch upon this problem later when dis-
cussing the results for generalized diffusion coefficients.

Our further advance is in the manner of the generalized
collective modes approach �24,27�. To find the generalized
diffusion coefficient, let us solve Eq. �4.5� with respect to the

hopping probabilities f̃ s,s+n�z� and insert the obtained result
into Eq. �4.4�. After grouping the similar terms, one obtains
the following equation:

z f̃s,s�z� − fs,s�0� = � 2tinter
2

z + �̃inter�z� + �̃intra�z� + �̃LL
+ �z�

+ �̃inter�z��	�
n

f̃ s+n,s+n�z� − 2 f̃ s,s�z�
 .

�4.11�

The ratio in the braces describes a coherent contribution

D̃coh�z� to the generalized diffusion coefficient and can be
interpreted in terms of a simple model of band-type motion
limited by scattering from the lattice at temperatures large as
compared to the bandwidth. Indeed, in the framework of this
model �21�

D̃coh�0� � v2/�̃�0� , �4.12�

where v denotes the average velocity of the adsorbate, and
�̃�0� means the total rate of scattering from the lattice. In the
two-band model, v is proportional to atinter, where a denotes
a substrate interatomic spacing, and the total scattering rate
is given by �̃inter�0�+ �̃intra�0�+ �̃LL

+ �0�. Hence, the coherent
diffusion coefficient is really of the form given in Eq. �4.12�.
On the other hand, D̃coh�z� characterizes the way in which

the dephasing limits the band motion of the adatom by the
destruction of the coherence of the hopping probabilities

f̃ s,s+n�z�. If the adparticle moves on the surface in a coherent
manner, not interacting with the substrate, then its eigenstate
is described by a superimposition of localized Wannier
states. This limiting case corresponds to the ballistic �colli-
sionless� regime of motion, when the mean-square displace-
ment of the particle is proportional to the squared time. How-
ever, the coupling with the thermal bath induces random
fluctuations of each phase, which destroys the coherence of

the state. Thus, D̃coh�z� is related to the competition between
the tunneling mechanism, which tends to preserve the coher-
ence, and the dephasing constant �̃�z�, which characterizes
damping due to the scattering process.

The second term �̃inter�z�� D̃in�z� in Eq. �4.11� is an in-
coherent contribution to the diffusion coefficient. This is the
result expected from the random-walk model for diffusion
with site-to-site hopping rate �̃inter�z�; it describes processes
in which the surface dynamics induces fluctuations of the
tunneling matrix elements between two Wannier states �30�.
As a result, the adparticle is allowed to perform a transition
from one Wannier state to another by creating or annihilating
surface phonons.

It has to be noted that the terms of “coherent” and “inco-
herent diffusion coefficients” are introduced just to distin-

guish the contributions of D̃coh�z� and D̃in�z� to the general-
ized diffusion coefficient and are widely used in the literature
�6,21,30�. In reality, no coherent motion is possible if the
adatom interacts with a thermal bath since a dephasing lim-
ited band motion destroys the coherence.

The last multiplier of Eq. �4.11� in a continuous media
limit, when the interatomic spacing tends to zero, converts to
the second derivative with respect to the space variable �for
1D lattice� times a2 or to the Laplace operator �for 2D lattice
in the absence of the next- to the nearest-neighbors hopping�
times 4a2. Then, performing the inverse Laplace transforma-
tion, one can write down a non-Markovian diffusion equa-
tion for the one-particle nonequilibrium distribution function
n�r , t� as follows:

�n�r,t�
�t

= �
t0

t

D�t − t���n�r,t��dt�, �4.13�

where � denotes the Laplace operator �obviously, this result
is valid rather for many-particle system at low coverage,
when there are gradients of the adparticles concentration,
than for the N→1 limit�. Let us remind that in the previous
section, we assumed the kinetic kernels to be independent of
the site label s. It is a very essential assumption, and it leads
to the absence of spatial nonlocality in the expressions for
generalized diffusion coefficients, so the memory effects
only are taken into consideration. The case when there is a
spatial inhomogeneity, which results from the site-dependent
interaction strengths �3.9� and spectral weight functions
�3.10�–�3.12�, is the subject of separate studies. For instance,
in Ref. �31�, the generalized diffusion coefficients in the
presence of large spatial gradients have been calculated using
the lattice-gas model of the nonequilibrium diffusion. Both

TABLE I. Rate functions �x, amplitudes �x, and spectral weight
functions Jx��� along with their low-frequency limits �3.13� and
�3.14�.

�x �x Jx���

�intra � /2 Jintra���=Jc���
�LR −�t1+ t0� /2 JLR���=Jc���
�RL −�t1+ t0� /2 JRL���=Jc���
�LL �t1− t0� /2 JLL���=Jp���
�RR �t1− t0� /2 JRR���=Jp���
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tracer Dtr and chemical diffusion Dch coefficients have been
shown to depend on the surface coverage � and its spatial
derivative; at that Dtr decreases by the value proportional to
the ����2 in comparison with its equilibrium value. The
most general case of the wave-vector-dependent diffusion
coefficients also with the time nonlocality is a challenging
topic of nonequilibrium surface diffusion theory. It allows
one to get a deeper insight into the dynamics of the system at
various time-spatial scales, and, undoubtedly, deserves much
attention from the researches but lies beyond the scope of the
present paper.

We call D�t�, entering Eq. �4.13�, the generalized diffu-
sion coefficients, even though this denotation is usually
�27,32� attributed to the Laplace transforms of D�t�. It should
be stressed that the time dependence of the kinetic kernels is
much more informative than the frequency one: the general-
ized diffusion coefficient D�t� is directly related to the flux-
flux time correlation function Cs,s

JJ �t� determined on the ad-
sorption site s. The investigation of its temporal behavior can
help to visualize a motion of the adparticle both at short and
long times.

V. ADPARTICLE DYNAMICS AT VARIOUS VALUES OF
THE COUPLING CONSTANTS

A. Intermediate and strong-coupling limits

In the intermediate to strong-coupling limit, when G
�0.01, the functions �4.8� could be approximated as follows:

�c���
�max�c

2 � exp�− �c�ln �0��kBT�2 + i��� , �5.1�

�p���
�max�p

2 � exp	−
�p

2
�kBT�2 + i��
 , �5.2�

while Bessel functions J0�2tinter�� can be taken equal to
unity. On the other hand, keeping in mind that the vibrational
frequency � is much greater than tunneling amplitudes tch,
tpr �21�, and performing the Markovian approximation
�̃intra�z�� �̃intra�0�, one can obtain the following expression
for the coherent part of the generalized diffusion coefficient:

D̃coh�z� = a2� t1

2
�2 tinter

z +
1

4
�2�̃c�z = 0�

. �5.3�

In time representation, it corresponds to an exponential
damping. On the contrary, according to Eqs. �5.1� and �5.2�,
kinetic kernels that form the incoherent term Din�t� decay as
Gaussian functions. If, in addition, the values of multipliers
at the corresponding powers of t are of the same order �the
choice of the parameters of our model at which all numerical
calculation have been performed, indeed, provides such a
situation�, then it is a good reason to perform the Markovian
approximation for Din�t�, while leaving Dcoh�t� under the in-
tegral in Eq. �4.13�. Thus, the diffusion �4.13� turns into

�n�r,t�
�t

= Din�n�r,t� + �
t0

t

Dcoh�t − t���n�r,t��dt�,

�5.4�

where Din= D̃in�0�=�0
�Din�t�dt denotes the Markovian limit

of the generalized diffusion coefficient Din�t� and has a
simple physical meaning of the incoherent part of the experi-
mentally observed diffusion coefficient �21�. Differentiating
both sides of Eq. �5.4� with respect to time, one obtains a
telegrapher’s equation

�n�r,t�
�t

+ �r
�2n�r,t�

�t2 = D�n�r,t� ,

�r =
4

�2�̃c�0�
, D = D̃in�0� + D̃coh�0� . �5.5�

This equation is known to describe a correlated random walk
�28� and, usually, is obtained phenomenologically by intro-
ducing special relaxation flux terms to the original diffusion
equation. We derived Eqs. �5.5� rigorously by the Markovian
approximation for the incoherent part of the generalized dif-
fusion coefficient as a result of different decay rates of Din�t�
and Dcoh�t�.

A solution of Eq. �5.5� can be either diffusionlike or
propagating �wavelike�. The first regime is being realized at
wave numbers kkmin. Here, kmin is the smallest root of the
corresponding characteristic equation for the intermediate
distribution function ñ�k , t�, which is a Fourier transform of
n�r , t�. On the other hand, in the domain kmink, the inter-
mediate distribution function starts to oscillate. It can be
shown that at intermediate and strong coupling, we have
kmina�1, i.e., the oscillations occur far away from the hy-
drodynamic region. Quite contrary, at weak coupling with
G�10−2, the following relation is valid: kmina�1, i.e., the
oscillations of ñ�k , t� occur in the hydrodynamic region.
Nevertheless, recalling the relation between the mean-square
displacement ��r�t�2� of the adparticle and the intermediate
distribution function ñ�k , t�

��r�t�2� = − � �2ñ�k,t�
�k2 �

k=0
, �5.6�

one can conclude that no oscillation is evident in the mean-
square displacement, and we have a diffusion with ��r�t�2�
→4�Din+Dcoh�t coming out monotonically to the Einstein’s
law at long times. Anyway, a reason for the formation of a
wavelike solutions of Eq. �5.5� is a presence of spatial inho-
mogeneities in the adsorbate-substrate system rather than the
nonmonotonic behavior of the generalized diffusion coeffi-
cients. In the next subsection, we will show what happens at
a very weak coupling, when it is not possible to perform the
Markovian approximation in Eq. �5.3�.

B. Weak-coupling limit

It could be shown �21� that in the weak-coupling limit,
when G10−2, the approximation �5.1� for the end-changing
kernels is still valid while this is not true for the end-
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preserving �Eq. �5.2�� ones. This is due to the different low-
frequency behavior of the weight spectral functions �3.13�
and �3.14�: only J������ with �2 provides a time con-
vergence of the integral for �̃�z=0�; hence we have to take
J0�2tinter�� into account to eliminate an eventual divergency.

On the other hand, it could be shown that in the weak-
coupling regime the approximation �5.3� fails, and we have
to take into consideration the exact expression for the coher-
ent generalized diffusion coefficient

D̃coh�z� = a2� t1

2
�2 tinter

z +
1

4
�2�̃c�z�

. �5.7�

Again, performing the Laplace transformation for the kinetic
kernel �c�t�, we make use of expression �5.1�. Thus, an ex-
ponential decay of Dcoh�t��exp�−t /�r�, occurring at the in-
termediate and strong couplings, could change to more com-
plicated behavior such as “long tails” �power-law relaxation
Dcoh�t��

Dcoh�t0�
1+�t−t0�� � or oscillation regime.

We performed numerically the inverse Laplace transfor-
mation to Eq. �5.7� to calculate the coherent contribution to
the generalized diffusion coefficient in a time representation.
For the incoherent part defined by Eq. �4.7�, the expressions
�5.1� and �5.2� were used, and we ensured the proper time
decay of the Din�t� multiplying Eq. �5.2� by the factor
J0

4�2tinter��.
In Figs. 1 and 2, we present the incoherent and coherent

parts of the generalized diffusion coefficient at a low value of
the vibrational frequency � /�max=0.1. Hereafter, all gener-
alized diffusion coefficients are expressed in the dimension-
less units �t1 /2�2a2�max.

It is seen from Fig. 1 that the incoherent part of the gen-
eralized diffusion coefficient decays comparatively fast at
times about 3�D, where �D=2� /�max stands for the period of
the fastest lattice vibration, and there is a good reason to
perform the Markovian approximation like it was done in
Eq. �5.4�. Moreover, both solid and dotted curves almost
coincide, meaning that a nonstationarity of the site-localized
states �characterized by J0�2tinter���, which leads to the un-
certainty in their energy of the order of magnitude of the
renormalized bandwidth tinter, are taken into account. Thus, it

is possible to get a one-phonon contribution to the rates
�̃x�0�, �̃LL

+ �0� without violation of the conservation law of the
energy. The one-phonon contribution is known to occur
mainly at low temperatures �6�, while at higher temperatures
many-phonon processes have to be taken into account �10�.
Note that only one-phonon processes have been taken into
consideration in the initial Hamiltonian �2.1�, and many-
phonon contributions are the results of its unitary transfor-
mation, leading to the appearance of the phonon-assisted
terms �3.4�–�3.6�.

The coherent contribution presented in Fig. 2 decays
much slower than Din�t�, and there is no reason to perform
the Markovian limit in the diffusion equation: the time of
decay of Dcoh�t� could be comparable with the relaxation
time of the one-particle nonequilibrium distribution function
n�r , t�. The lattice has no time to relax after the adsorbate
motion, and the memory effects become of high importance.
On the other hand, little could be concluded from Fig. 2
about the law of time relaxation of the generalized diffusion
coefficient Dcoh�t�, and additional studies are to the point.

At higher temperature but still at low vibrational fre-
quency, the time evolution of the incoherent term �Fig. 3� is
similar to the case kBT /
�max=0.1, but the problem of a
slow decay appears when one neglects the factor J0

4�2tinter��.
As for the coherent contribution to the generalized diffusion
coefficient �Fig. 4�, one can observe much slower relaxation
as compared to the low-temperature case. When temperature
rises, the phonon bath delivers more energy to the adparticle,
and the generalized diffusion coefficient, which can be re-
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FIG. 1. The incoherent part of the generalized diffusion coeffi-
cient as a function of the dimensionless time �maxt calculated at the
coupling constant G=10−3 and the temperature kBT /
�max=0.1. A
solid curve is obtained when omitting Bessel function in the kinetic
kernel.
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FIG. 2. The coherent part of the generalized diffusion coefficient
calculated at G=10−3, kBT /
�max=0.1, and � /�max=0.1.
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FIG. 3. The incoherent part of the generalized diffusion coeffi-
cient calculated at G=10−3 and kBT /
�max=1. A solid curve is
obtained when omitting Bessel function in the kinetic kernel.
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lated to the flux-flux time correlation function �9,10�, decays
much slower.

The behavior of Dcoh�t� changes drastically when the vi-
brational frequency increases. In Fig. 5, we present the time
evolution of the coherent part of the generalized diffusion
coefficient at �, comparable with the Debye frequency.
There are profound long-live oscillations with a period of
about 2� /�.

These oscillations become even more pronounced when
the system temperature decreases. In Fig. 6, we present the
generalized diffusion coefficients D�t�=Din�t�+Dcoh�t� cal-
culated at different temperatures. At low temperatures, ther-
mal fluctuations of the lattice are very small. Therefore, a
lattice distortion caused by the interaction of the adsorbate
with the phonon subsystem, when the adparticle initially re-
sides at the top of the barrier, has no time to relax, and the
initial �unperturbed� profile of the static lattice potential has
no time to be restored after the particle passage. As a result,
the effective barrier has a higher value than its adiabatic one,
and the particle starts to oscillate being caged in the de-
formed potential well. This leads to the pronounced damped
oscillations regime. Such a behavior of D�t� is observed even
at the temperatures comparable with 
�max /kB. At lower
temperatures about kBT /
�max=0.1 �which are not presented
in Fig. 6�, these oscillations persist on the time scales, which
are by two orders of magnitude higher than the inverse De-
bye frequency.

It would be interesting to relate this nonmonotonic behav-
ior of D�t� to the possible recrossing phenomenon
�13,14,16,17�. It is seen from the last figure that the time
evolution of the generalized diffusion coefficient cannot be

approximated by a damped cosine function. On the contrary,
from Fig. 6 one can conclude that such a behavior is inherent
to the damped inharmonic oscillator: the period of oscilla-
tions rises with a decrease in the decrement; while for the
damped harmonic oscillator, the situation is quite opposite. It
is not strange because the large value of � could be associ-
ated with the motion of the adsorbate far from the bottom of
the quantum well. But how “far” is that far: is the energy
large enough so that adparticle, which is weakly coupled
with a substrate and dissipates its energy very slowly, can
traverse several potential barriers and perform multiple �or
long� hopping?

This question can be partially answered when one calcu-
lates a mean-square displacement of the particle. In Fig. 7,
we plot the time evolution of ��r�t�2�. It is seen that even in
the high-temperature regime the mean-square displacement
at short times exceeds a2. Nevertheless, we cannot with cer-
tainty attribute this result to eventual multiple hopping �or
long jumps� without an additional study. One of the possible
ways consists in calculation of the flux-flux time correlation
function Cs,s+n

jj �t� determined on the neighboring sites
�13,17�. An attempt to estimate it without a direct calculation
of the quantum correlation functions could be performed in
the framework of our approach: one has to solve Eq. �4.4�
with respect to the distribution functions f̃ ss�z� and to insert
the obtained result in Eq. �4.5� for nonequilibrium jump
probabilities. After regrouping of the corresponding terms, it
is possible to obtain the kinetic kernel related to Cs,s+n�t�
similarly, as it was done when obtaining Eq. �4.11�. As for
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FIG. 5. The coherent part of the generalized diffusion coefficient
calculated at G=10−3, kBT /
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FIG. 4. The coherent part of the generalized diffusion coefficient
calculated at G=10−3, kBT /
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the investigation of the recrossing problem dealt with the
study of the Cs,s

JJ �t�, our approach allows to obtain reliable
estimations.

Finally, let us consider the crossover from purely mono-
tonic relaxation of the generalized diffusion coefficients to
the damped oscillations regime. If one lowers the coupling
constant G until the oscillations in D�t� appear, one can ob-
tain a critical value Gcr�T ,�� as a function of temperature
and vibrational frequency, which separates these two regimes
of time evolution: there is a plain relaxation of the D�t� at
G�Gcr�T ,�� and a nonmonotonic behavior at G
Gcr�T ,��. It can be shown that at the fixed temperature T�,
a critical value of the coupling constant is scaled as
Gcr�T� ,����2. If one fixes a vibrational frequency ��, a
critical value of the coupling constant Gcr�T ,��� becomes a
nonmonotonic slightly varying function of the temperature.
Undoubtedly, a detailed study of the behavior of Gcr�T ,��
can shed more light on the nature of adparticle dynamics.

VI. DISCUSSION

First, we would like to discuss the relation of the used
model to the commonly accepted scenarios of the quantum
tunneling mechanism. Usually, it is believed that coupling to
phonons could lead to an activated behavior even in the tun-
neling regime, with an activation energy EA obtained in the
Markovian limit from the so-called small polaron model,
when the local lattice distortion is carried from site to site by
the tunneling particle �22,33–35�. However, the small po-
laron energy was found to be only a fraction of the relaxation
energy of the lattice and has the order of a few meV. This is
in contradiction with recent experimental data �36�, showing
a much higher value of EA and possibly pointing to a differ-
ent mechanism of the underbarrier hopping, which occurs
through thermal excitation to the first vibrational excited
state and then tunneling to the neighboring sites.

When the memory effects are taken into consideration, the
lack of relaxation of the substrate during the adparticle mo-
tion increases the effective barrier, so it is higher than the
adiabatic one. The increase in the barrier is proportional to
the relaxation energy of the substrate atoms and can be a
significant fraction of the barrier height. The particle is caged
in the deformed potential well, and the long-live oscillations
of the generalized diffusion coefficient appear.

To pursue further discussion and to relate the generalized
diffusion coefficients with quantities directly measurable in
the experiments, we would like to underline some important
points. As have been already said, in the Markovian limit, the
zeroth moment D0=�0

�D�t�dt of the generalized diffusion co-
efficient is usually associated with the experimentally ob-
served diffusion coefficient Dexp. However, it is no longer
true if the memory effects are taken into account. A math-
ematical manifestation of the Markovian approximation fail-
ure consists in the fact that D0 becomes larger than Dexp �3�.

In the considered case, when the memory effects are taken
into account, the temperature behavior of the experimental
diffusion coefficient Dexp should be compared with that of
the quantity D= 1

4 lim
t→�

��r�t�2� / t, which is the long-time limit

of the mean-square displacement �5.6�. To find it, one has, in

particular, to solve the non-Markovian equation for the inter-
mediate distribution function n�k , t�. The obtained result will
strongly depend on the time behavior of the generalized dif-
fusion coefficients, which play the role of the kinetic kernels
in the corresponding nonlocal diffusion equations: the even-
tual oscillations of D�t� reduce the mean-square displace-
ment, while possible long tails increase this value.

The obtained results can differ from �i� those of the Mar-
kovian approximation for the small polaron model and from
�ii� those of the model of activated diffusion through the
higher vibrational states �3,36�. The case �i� has been already
analyzed: the weaker the substrate-adsorbate coupling in the
system is, the more the relaxation energy of the substrate
increases the effective barrier. As for the case �ii�, it should
be noted that the term “activation energy” loses its sense if
one cannot obtain an explicit Arrhenius-like form for the
temperature behavior of the diffusion coefficients. For the
model similar to ours, it has been shown �30� that no acti-
vated regime is possible for the coherent diffusion coefficient
at low temperatures, and the temperature dependence of the
coefficient is then governed by that of the dephasing constant
and given by the power law in T. The common feature of our
results and those obtained in Ref. �30� is a scaling of the
generalized coherent diffusion coefficient as �−2 and inverse

dependence of D̃coh�z� on the kinetic kernel related to the
dephasing constant. However, little can be said about a tem-
perature dependence of the diffusion coefficient D, which
can be calculated as described above, without an additional
study. Thus, the question of the temperature behavior of the
diffusion coefficients in the problems of quantum non-
Markovian diffusion is in no way a trivial one.

Our model yields the correct results in the limiting cases,
and this serves as an additional criterion of its consistency.
Thus, in the limit of vanishing coupling constant, the calcu-
lated mean-square displacement oscillates with the frequency
� �if the relation 
�� t0 , t1 is valid� or steadily arrives at the
asymptotics given by the Einstein’s law at long times �in the
opposite case of a single-band model�.

However, the adparticle located in the quantum well usu-
ally has several vibrational states �30�, and the coupling of
the adsorbate with the substrate is different in different
eigenstates �21�. Therefore, the two-level model can be im-
proved by taking into account not only the first-excited level
but also some higher vibrational states coupled to the phonon
degrees of freedom. As soon as it is done, and one deals with
a set of different vibrational frequencies, a more accurate
interpretation of the obtained results can be given in the con-
text of the recrossing problem. In particular, a controversial
result �see Fig. 7� of large oscillations of the mean-square
displacement at short times could be eliminated, and the am-
plitude of ��r�t�2� should be reduced. It is also reasonable to
introduce different coupling constants for different states,
though it can complicate a derivation of the kinetic equations
to a great extent.

The obtained results look quite interesting in the context
of comparison with a multiple hopping during thermally ac-
tivated surface diffusion �11,12�. At weak coupling and high
enough barriers, the adparticle performs a good portion of
the oscillations inside the potential well and, having been not
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thermalized and trapped at the adsorption site, can carry out
a series of multiple hoppings. A nonmonotonic behavior of
the mean-square displacement is a manifestation of such a
hopping regime. It should be noted that, according to desig-
nations of Ref. �12�, the regime of the adparticle motion,
being studied in our paper �small G, large ��, is close to the
zone 2: low friction, considerable probability of the multiple
jumps. A natural question appears: what happens if one low-
ers the barrier height �that corresponds to the decrease of ��?
Will the regime of the quasicontinuous diffusion be reached?
Our quantum lattice model allows to take into consideration
the next- to the nearest-neighbor tunneling in the initial
Hamiltonian �2.1�. Very preliminary studies dealt with the
“multiple jumps or long jumps” dilemma showed that the
onset of the oscillation regime in presence of tunneling on
large distances is observed in the limit �→0 and at large G,
i.e., close to the domain of high friction, low barriers, and
quasicontinuous diffusion �domain 5 reported in Ref. �12��. It
would be also interesting to investigate which contribution to
the diffusion coefficient �coherent or incoherent one� domi-
nates during multiple or long hopping. The study of quantum
diffusion for the H/Ni�111� system by the Monte Carlo wave-
function method �which enables visualization of the trajecto-
ries in a real space� has been carried out in Ref. �37�, show-
ing a good fraction of long coherent tunneling processes;
hence the investigation of the long underbarrier hoppings is a
worthwhile problem.

We would like also to touch upon the consideration of
anharmonicities in the adsorbate-substrate interaction. It was
shown in the previous section that there are some problems
with ensuring of the proper time decay of the kernels dealt
with the end-preserving processes. In our point of view, tak-
ing into consideration the multiphonon processes �exceeding
the limits of small lattice displacements� in the initial Hamil-
tonian is more promising �though more complicated from the
computational point of view� than the way followed in Refs.
�6,21�, when the multiphonon contributions are evaluated by
expanding the kinetic kernels �4.8� and �4.9� in the series in
����. Taking into account the anharmonic terms provides an
additional channel of the energy dissipation in the adsorbate-
substrate system, though the intensity of such kind of inter-
action itself could be relatively small �10�. Nevertheless, in
the case of dielectric solids, when there is no electronic fric-
tion in the system, consideration of multiphonon processes is
indispensable to obtain convergent values of the diffusion
coefficients �38,39�.

VII. CONCLUSIONS

In this paper, we use the quantum-kinetic approach for the
description of surface diffusion of a light particle adsorbed
on a metallic surface and interacting with substrate vibra-
tions. In a single adsorbate limit, we obtained the system of
coupled equations for the one-particle nonequilibrium distri-
bution functions and nonequilibrium tunneling probabilities.
These equations have phonon-modified kernels, which de-
pend on the lattice parameters, and are nonlocal in time. The
Laplace transformation allows to pass from the initial
integro-differential equations to the chain of linear algebraic

equations with frequency-dependent coefficients.
The generalized diffusion coefficient was calculated by

the standard rolling-up procedure �by elimination of hopping
probabilities from the set of equation� with subsequent in-
verse Laplace transformation and turned out to consist of two
terms: a coherent contribution, which can be interpreted in
terms of a simple model of band-type motion limited by
scattering from the lattice, and incoherent one, following
from the random-walk model for diffusion with site-to-site
hopping. These two terms have been found to decay on dif-
ferent time scales; in the intermediate to strong-coupling
limit, this allows us to obtain the telegrapher’s equation gov-
erning the dynamics of the adsorbed particle, which has ei-
ther diffusionlike or wavelike solutions. If the substrate-
adsorbate interaction is weak enough and the energy of the
level splitting is comparable with temperature of the lattice,
the generalized diffusion coefficient itself has pronounced
long-live oscillations that lead to the nonmonotonic behavior
of the mean-square displacement of the adparticle at short
times. If the vibrational energy is not too large, the time
decay of the generalized diffusion coefficients is also very
slow, though there is no oscillation of D�t�. Thus, in the
weak-coupling limit when the energy exchange between the
adsorbate and the substrate is slowed down, the memory ef-
fects start to play an essential role and change the jump dy-
namics of the adparticle considerably.
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APPENDIX

To obtain the system of quantum-kinetic equations for the
one-particle nonequilibrium distribution functions fc�,c��t�
and hopping probabilities fc�,c����t�, let us multiply Eq. �4.1�
by ac���

† ac� and average this product over �S�t�. The second
term in the left-hand side yields the coherent �nondissipative�
contributions to the kinetic equations �4.4� and �4.5�. To ob-
tain the incoherent contributions, which is formed by the
integral term in Eq. �4.1�, one has to find, at first, the Heisen-
berg representation for the operators ak�

† �ak�� and bq
†�bq�.

Calculation of the latter is quite simple,

bq
†�t� = exp�i�qt�bq

†, bq�t� = exp�− i�qt�bq. �A1�

To calculate the operators ac�
† �t�, ac��t�, one has to note that

because of the different behavior of the corresponding spec-
tral weight functions in the low-frequency limit the term
�Hintra�B vanishes, while �Hinter�B equals to Eq. �4.6�. This
term forms the off-diagonal elements of the dynamic matrix,
while the diagonal ones in the low coverage limit are formed
via the mean-field energy Epp

mf �see Eq. �3.8�� �in the one-
particle limit, it transforms to the stabilization energy Estab
=C0

DD+C0
OO�. It can be shown that the three-diagonal dy-

namic matrix of exp� i

HSt� yields
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ak�
† �t� � �e�i/
�HSt�k�,l�al�

† = J�k−l�
D �2tintert�e�i/
�Epp

mftal�
† ,

ak��t� � �e−�i/
�HSt�k�,l�al� = J�k−l�
D �2tintert�e−�i/
�Epp

mftal�,

�A2�

where D means the dimension of the lattice, and J�k−l��2tintert�
are the �k− l�th order Bessel functions. Having calculated the
time evolution of all quantum-mechanical operators, after
some straightforward algebra we can express the integrand
which forms the incoherent terms of the kinetic equations as

J�k−l�
D �2tinter��J�k�−l��

D �2tinter������B̄cs
���B̄kk�

�������B

− ��B̄kk�
�������B̄cs

���B�

��fs�,c����t��f l���,l��t�� � fs�,l��t��f l���,c����t���

+ ��B̄cl
���B̄kk�

�������Bfl���,c����t��

− ��B̄sc�
����B̄kk�

�������Bfl���,s��t���cl − � . . . c�↔c���
�  .

�A3�

In Eq. �A3�, a summation over repeated indexes is assumed;
the upper �lower� sign corresponds to the case of Bose
�Fermi� statistics, and � . . . c�↔c���

� stands for the complex
conjugate of all preceding it terms in the parentheses with
the replaced indexes c�→c���, c���→c�. The other nota-

tions in Eq. �A3� are the following: �= t− t�, B̄ss�
��

= � 1
2�Bs , tchBss�

LR,RL , tprBss�
LL,RR, where Bss�

�� are defined in Eqs.
�3.5� and �3.7�.

When obtaining Eq. �A3�, we took into account the fact
that the system Hamiltonian in the mean-field approximation
is a bilinear form of the operators a†, a. This allowed us to
perform the Wick’s decomposition of the higher operator
products and to express the kinetic equations in the closed
form via the nonequilibrium distribution functions and hop-
ping probabilities.

In the one-particle limit, Eq. �A3� becomes linear in f�t��,
and the adparticle statistics is no longer relevant. To simplify
Eq. �A3� further, one has to note that it contains kinetic ker-

nels of two types: �i� those which are finite at �=0 and �ii�
those which are zero at �=0. It can be shown that the most
important contributions to the kernels are those with nonzero
values at �=0. They are proportional to the zeroth-order
Bessel functions J0�2tinter�� and to one of the following cor-

relation functions: ��Bss
����Bss

�������B, ��Bss�
����Bs�s

�������B,

��Bss�
���Bs�s

��������B, and ��Bss�
���Bss�

�� ����B, corresponding to
the cases with the same lattice displacements and without a
cross correlation between the different types of processes. In
other words, the intrasite and intersite processes are sepa-
rated, whereas the intersite end-changing processes do not
correlate with the intersite end-preserving ones.

Then we calculate the lattice time correlation functions by
using the Baker-Campbell-Hausdorff formula

eAeA��� = eA+A���+�A,A����/2+�A,�A,A�����/12+. . . �A4�

for the operators Acc�
���=−�q�cc�

����q��bq−bq
†� and Acc�

������=

−�q�cc�
����q��bqe−i�q�−bq

†ei�q��. Here �cc�
����q�= �2

	cq


�q
,

�q
cc�� �+��q

cc� ,�q
cc�� �−��q

cc� �see Eqs. �3.5� and �3.7��. Using
the cumulant expansion

�exp�A + A�����B = exp	�
n=1

�
1

n!
Kn���
 , �A5�

taking into account the symmetry properties of �cc�
��� with

respect to the site permutation along with the definitions
�3.10�–�3.12� of the spectral weight functions, and noting
that only the cumulants Kn��� with n�2 contribute to the
lattice correlation functions, one obtains the expressions
�4.8� and �4.9� for the kinetic kernels with the function ����
in the form �4.10�. Note that the kernel �4.9�, in contrast to
the kernels �4.8�, is not a “golden-rule” rate and can be nega-
tive �21�.

The basic expressions �4.4� and �4.5� appear after the
Laplace transformation of the obtained kinetic equations for
the one-particle nonequilibrium distribution functions fs,s�t�
=�i=L,R�asi

† asi�S
t and hopping probabilities fs,s+n�t�

=�i=L,R�as+ni
† asi�S

t .
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